Loss of neural recognition molecule NB-3 delays the normal projection and terminal branching of developing corticospinal tract axons in the mouse.
نویسندگان
چکیده
Neural recognition molecule NB-3 is involved in neural development and synapse formation. However, its role in axon tract formation is unclear. In this study, we found that the temporal expression of NB-3 in the deep layers of the motor cortex in mice was coincident with the development of the corticospinal tract (CST). Clear NB-3 immunoreactivity in the CST trajectory strongly suggested that NB-3 was expressed specifically in projecting CST axons. By tracing CST axons in NB-3−/− mice at different developmental stages, we found that these axons were capable of projecting and forming a normal trajectory. However, the projection was greatly delayed in NB-3−/− mice compared with wild-type (WT) mice from the embryonic to postnatal stages, a period that is coincident with the completion of the CST projection in mice. Subsequently, although their projection was delayed, CST axons in NB-3−/− mice gradually completed a normal projection. By stage P21, the characteristics of CST projections in NB-3−/− mice were not statistically different from those in WT mice. In addition, we found that the branching of CST axons into spinal gray matter also was delayed in NB-3−/− mice. The CST innervation area in the spinal gray matter of NB-3−/− mice was greatly reduced in comparison with WT mice until P30 and gradually became normal by P45. These data suggest that NB-3 is involved in the normal projection and terminal branching of developing CST axons.
منابع مشابه
Spatially restricted increase in polysialic acid enhances corticospinal axon branching related to target recognition and innervation.
The polysialic acid (PSA) modification of the neural cell adhesion molecule (NCAM) has been shown to alter the responses of developing axons to their environment. We have studied the potential role of PSA in regulating the innervation of the spinal cord by corticospinal axons, which occurs by a delayed formation of collateral branches from the parent axons. Developmental changes in the distribu...
متن کاملEctopic expression of the neural cell adhesion molecule L1 in astrocytes leads to changes in the development of the corticospinal tract.
The cell recognition molecule L1, of the immunoglobulin superfamily, participates in the formation of the nervous system and has been shown to enhance cell migration and neurite outgrowth in vitro. To test whether ectopic expression of L1 would influence axonal outgrowth in vivo, we studied the development of the corticospinal tract in transgenic mice expressing L1 in astrocytes under the contr...
متن کاملPathfinding errors of corticospinal axons in neural cell adhesion molecule-deficient mice.
The neural cell adhesion molecule (NCAM) is a cell recognition molecule of the Ig superfamily implicated in cell migration, myelination, and synaptic plasticity, as well as elongation, fasciculation, and pathfinding of axons. Here, we used NCAM-deficient mice to investigate the role of NCAM in the development of the corticospinal tract. We demonstrate severe hypoplasia of the corticospinal trac...
متن کاملErrors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1
BACKGROUND Neural cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) have been implicated in both the fasciculation and guidance of axons, but direct genetic evidence of a role for neural IgCAMs in axon guidance in vertebrates is lacking. The L1 subfamily of vertebrate neural IgCAMs function as both homophilic and heterophilic receptors for a variety of cell-surface and extracel...
متن کاملNeural recognition molecules CHL1 and NB-3 regulate apical dendrite orientation in the neocortex via PTP alpha.
Apical dendrites of pyramidal neurons in the neocortex have a stereotypic orientation that is important for neuronal function. Neural recognition molecule Close Homolog of L1 (CHL1) has been shown to regulate oriented growth of apical dendrites in the mouse caudal cortex. Here we show that CHL1 directly associates with NB-3, a member of the F3/contactin family of neural recognition molecules, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 520 6 شماره
صفحات -
تاریخ انتشار 2012